### <u>Note 20</u>

### **Coventry Climax: Specific Power variation with Stroke**



The 1953 – 1966 Coventry Climax series of DOHC Naturally-Aspirated racing engines provides a good illustration of the effect on Volume Specific Power (PP/V) and Piston Area Specific Power (PP/PA) of shortening Stroke (S). The details and charts are given on pp.2, 3 and 4.

This series has the valuable advantage for comparison purposes of a common design, detailing, manufacturing and development philosophy under one chief, Walter Hassan, and all powers tested to the same standard have been published by the company.

To remove the (fairly small) variation of Compression Ratio (R) the powers have been "normalised" by Air Standard Efficiency (ASE) to R = 12 and, for the 2 units running on alcohol-base fuel, an adjustment to petrol equivalent of 1/1.12 has been applied (these adjustments are RA and AA respectively, as described in the <u>Key to Abbreviations</u> to Appendix 1). This "normalised" Peak Power is identified as PPA. Purely to give a convenient number 1/S is shown as (100/Smm).

It can be seen on Fig. 104/DST on p.2 that for this engine series – in which the 1<sup>st</sup>, the V8 FPE was not fully-developed – there is a steady decline in the gain of PPA/V as 100/Smm increases. The last engine produced in 1965 for the 1.5 L formula, the F16 FWMW, may have been very near the maximum attainable, although it also was not fully developed before the project was dropped.

In choosing 16-cylinders in late 1963 for an engine which he hoped would be available for racing in 1965, Hassan was unfortunately influenced by the old theory:-

"Power proportional to Piston Area".

This of course *would* be true if Brake Mean Effective Pressure (BMEP) and Mean Piston Speed (MPS) were constant. He took the PP/PA achieved by the then-current FWMV3 at 4.5 HP/sq. in. (=0.7 HP/cm<sup>2</sup>) and thought that an increase in PA of 27% (45 to 57 sq.in.) would provide an engine giving 240 to 250 HP (34). See Fig. N2OA on P.4.

Fig. 105/DST shows clearly that the "old theory" does *not* apply even for engines of given technology. The FWMW never gave over 209 HP.

Fig.106/DST on p.3 illustrates the way that MPSP (MPS at Peak Power) drooped off in the Climax range by about 25% as 1/Stroke was reduced to raise RPM. Apart from "normal" friction losses the F16 seems to have had an oil churning problem to reduce its Mechanical Efficiency (EM).

Fig. 107/DST suggests that, with an *average* BMPA of 12.1 Bar, there was an optimum around 12½
Bar (+ 3%) in the middle of the range. The FWMW, with the smallest cylinders of the series (B = 54.1 mm; S = 40.6 mm) had actually fallen off to only 10.4 Bar as flow pressure loss and heat loss increased, i.e. Volumetric Efficiency (EV) and Combustion Efficiency (EC), as well as EM, fell, as (Surface Area/ Volume) proportional to (1/Characteristic Dimension) increased.

Fig.108/DST gives BMPA translated into Combined Efficiency, ECOM%, for these Naturally-Aspirated engines for which Manifold Density Ratio (MDR) was 1, so

# ECOM% = BMPA x 100/23.94.

The average value was 50.7%. The best value was for the 90V8 FWMV Mk 1 1.5 L at 55.2%. As that family of V8 engines was developed to shorter Stroke and higher power, ECOM declined to 50.7% at the Mk 7. The F16 FWMW 1.5 L was only 43.6%.

# COVENTRY CLIMAX. DOHC Racing Engines. Normally-Aspirated

Sources: DASO 33, 34, 54, 57, 131, 131B, 249, 515.

| S/No. | Year   | Туре     | V    | 100/Smm | PP  | R    | RA    | AA   | PPA      | PPA/V    | PPA/PA  |
|-------|--------|----------|------|---------|-----|------|-------|------|----------|----------|---------|
|       |        |          | СС   |         | HP  |      |       |      | HPnormal | HP/Litre | HP/SqCm |
| 1     | 1953   | FPE      | 2479 | 1.472   | 258 | 11   | 1.021 | 1.12 | 235.2    | 94.9     | 0.64    |
| 2     | 1957   | FPF      | 1476 | 1.406   | 146 | 10   | 1.047 | 1    | 152.8    | 103.5    | 0.74    |
| 3     | 1957.5 | FPF Mod  | 1964 | 1.193   | 180 | 12.4 | 0.993 | 1    | 178.7    | 91       | 0.76    |
| 4     | 1958   | FPF Mod  | 2207 | 1.125   | 194 | 11.1 | 1.019 | 1    | 197.7    | 89.6     | 0.8     |
| 5     | 1959   | FPF GP   | 2496 | 1.112   | 220 | 10.3 | 1.038 | 1    | 228.5    | 91.5     | 0.82    |
| 6     | 1960   | FPF GP   | 2496 | 1.112   | 240 | 11.9 | 1.002 | 1    | 240.5    | 96.4     | 0.87    |
| 7     | 1961   | FPF Mk2  | 1495 | 1.406   | 151 | 10.7 | 1.029 | 1    | 155.3    | 103.9    | 0.74    |
| 8     | 1961.5 | FPF Indy | 2751 | 1.053   | 270 | 12   | 1     | 1.12 | 241.1    | 87.6     | 0.83    |
| 9     | 1961.8 | FWMV 1   | 1495 | 1.668   | 181 | 10.4 | 1.036 | 1    | 187.5    | 125.5    | 0.75    |
| 10    | 1963   | FWMV 3   | 1496 | 1.939   | 195 | 11   | 1.021 | 1    | 199.2    | 133.2    | 0.69    |
| 11    | 1964   | FWMV 5   | 1497 | 2.199   | 203 | 12   | 1     | 1    | 203      | 135.6    | 0.62    |
| 12    | 1965   | FWMV 6   | 1497 | 2.199   | 212 | 12   | 1     | 1    | 212      | 141.6    | 0.64    |
| 13    | 1965.1 | FWMV 7   | 1497 | 2.199   | 213 | 12   | 1     | 1    | 213      | 142.3    | 0.65    |
| 14    | 1965.2 | FWMW     | 1495 | 2.461   | 209 | 12   | 1     | 1    | 209      | 139.8    | 0.57    |
| 15    | 1966   | FWMV 10  | 1974 | 1.668   | 244 | 12   | 1     | 1    | 244      | 123.6    | 0.74    |







### p1 of 2

| S/No  | Vear   | Type     | V    | 100/Smm   | FCOM%  | MPSP  | BMPA  |  |
|-------|--------|----------|------|-----------|--------|-------|-------|--|
| 0/10. | i cai  | Type     | cc   | 100/01111 | Loomin | m/s   | Bar   |  |
| 1     | 1953   | FPE      | 2479 | 1.472     | 43.0   | 18.68 | 10.29 |  |
| 2     | 1957   | FPF      | 1476 | 1.406     | 53.0   | 17.31 | 12.69 |  |
| 3     | 1957.5 | FPF Mod  | 1964 | 1.193     | 50.4   | 18.86 | 12.06 |  |
| 4     | 1958   | FPF Mod  | 2207 | 1.125     | 53.6   | 18.52 | 12.82 |  |
| 5     | 1959   | FPF GP   | 2496 | 1.112     | 50.7   | 20.23 | 12.14 |  |
| 6     | 1960   | FPF GP   | 2496 | 1.112     | 53.0   | 20.38 | 12.68 |  |
| 7     | 1961   | FPF Mk2  | 1495 | 1.406     | 51.8   | 17.78 | 12.4  |  |
| 8     | 1961.5 | FPF Indy | 2751 | 1.053     | 48.2   | 21.53 | 11.53 |  |
| 9     | 1961.8 | FWMV 1   | 1495 | 1.668     | 55.2   | 16.98 | 13.21 |  |
| 10    | 1963   | FWMV 3   | 1496 | 1.939     | 52.4   | 16.33 | 12.54 |  |
| 11    | 1964   | FWMV 5   | 1497 | 2.199     | 52.0   | 14.78 | 12.45 |  |
| 12    | 1965   | FWMV 6   | 1497 | 2.199     | 51.4   | 15.61 | 12.31 |  |
| 13    | 1965.1 | FWMV 7   | 1497 | 2.199     | 50.7   | 15.91 | 12.13 |  |
| 14    | 1965.2 | FWMW     | 1495 | 2.461     | 43.6   | 16.26 | 10.43 |  |
| 15    | 1966   | FWMV 10  | 1974 | 1.668     | 51.9   | 17.78 | 12.43 |  |





p2 of 2

P.3 of 4





| Fig. N20A               |           |  |  |  |  |  |
|-------------------------|-----------|--|--|--|--|--|
| 1965 Coventry Climax    | FWMW      |  |  |  |  |  |
| F16 2.13"/1.60" = 1.331 | 91.22 cid |  |  |  |  |  |
| (54.102mm/40.64         | 1,495 cc) |  |  |  |  |  |
|                         |           |  |  |  |  |  |

